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Abstract We present the first sector-specific analysis of methane (CH4) emissions from the San Francisco
Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during
September – December 2015. We apply a hierarchical Bayesian inversion to separate the biological from
fossil-fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a
source-specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4

emissions are 166–289GgCH4/yr (at 95% confidence), 1.3–2.3 times higher than a recent inventory with
much of the underestimation from landfill. Including the VOCs, 82� 27% of total posterior median CH4

emissions are biological and 17� 3% fossil fuel, where landfill and natural gas dominate the biological and
fossil-fuel CH4 of prior emissions, respectively.

1. Introduction

With increased interest in mitigating rapid climate change impacts [e.g., Hu et al., 2013], California’s Short
Lived Climate Pollutant Act (SB-605) includes a focus on methane (CH4) emission mitigation [California
Legislative Information, 2014]. Recent top-down studies in California [e.g., Jeong et al., 2013; Johnson et al.,
2014; Wecht et al., 2014; Turner et al., 2015] suggest that California’s CH4 emissions are underestimated in
the official greenhouse gas (GHG) inventory [California Air Resources Board (CARB), 2014, 2015]. While both
California Air Resources Board (CARB)’s inventory and top-down studies using atmospheric measurements
[Jeong et al., 2013, 2016; Wecht et al., 2014; Turner et al., 2015] suggest that California’s Central Valley is the
major source of the state’s CH4 emissions, increasing evidence suggests that California’s large metropolitan
regions constitute an important component of the state’s anthropogenic CH4 budget [Hsu et al., 2010;
Wennberg et al., 2012; Peischl et al., 2013; Cui et al., 2015; Fairley and Fischer, 2015; Wong et al., 2015;
Hopkins et al., 2016; Wunch et al., 2016; Jeong et al., 2016; Johnson et al., 2016]. Furthermore, multiple recent
studies in South Coast Air Basin (SoCAB; Los Angeles and surrounding areas) suggest that identifying CH4

emission sources is important at the subregional or city scale for mitigation planning, but source partitioning
is much more uncertain than estimating total CH4 budget at this scale [Wennberg et al., 2012; Jeong et al.,
2013, 2016; Peischl et al., 2013; Wong et al., 2015; Cui et al., 2015; Hopkins et al., 2016; Conley et al., 2016].

Few studies have been conducted to estimate CH4 emissions in the San Francisco Bay Area (SFBA), despite the
fact that the total CH4 emissions of this metropolitan region are estimated to be approximately 30% of CH4

emissions from SoCAB, based on the CARB and Bay Area Air Quality Management District (BAAQMD) inven-
tories [CARB, 2014; Bay Area Air Quality Management District (BAAQMD), 2015]. Recent studies report that the
central (i.e., mean) estimates for CH4 emissions in SFBA range from 240 to 430Gg/yr [Fairley and Fischer,
2015; Jeong et al., 2016; Wecht et al., 2014], which are larger than the BAAQMD inventory by factors of ~2–4.
Given the discrepancy between the bottom-up inventory and the top-down analysis, it is important to further
verify the estimates by Fairley and Fischer [2015], Jeong et al. [2016], andWecht et al. [2014] and identify poten-
tial emissions sources for efficient mitigation planning, which has not been addressed by the previous studies.

We conducted a short-term measurement campaign to quantify CH4 emissions from SFBA by measuring CH4

and volatile organic compounds (VOCs) from six ground sites during September–December 2015. In
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particular, this study combines CH4 with four VOC species (ethane (C2H6), i-pentane (i-C5H12), n-pentane
(n-C5H12), and toluene (C7H8)) for source partitioning of CH4 emissions. Expanding on previous work by
Jeong et al. [2016] and Ganesan et al. [2014], we developed a hierarchical Bayesian inversion (HBI) method
for source partitioning. This novel approach incorporates both CH4 and VOC measurements into a full
Bayesian inverse analysis, allowing us to demonstrate the utility of multiple VOCs and a high-resolution
spatially explicit emission model to separate natural gas and petroleum emissions from biological emissions.

2. Data and Methods
2.1. Atmospheric Measurements

We conducted an intensive measurement campaign including CH4, selected VOCs, and carbon monoxide
(CO) measurements from September to December 2015. Measurements of C2H6 have been used to constrain
CH4 emissions from the natural gas (NG) sector [e.g., Peischl et al., 2013;McKain et al., 2015], and we chose the
other VOCs for the petroleum (PL) sector based on previous work [Kirchstetter et al., 1996] where emission
ratios of VOCs to CH4 are available. The CH4 and VOC measurements were made at five sites within SFBA
and at a SFBA outflow site near Walnut Grove, CA (WGC, see Table S1 in the supporting information). With
the exception of the Livermore site, CO flask sampling or continuous CO measurements were made at all
sites. To capture CO measurements in the Livermore Valley, continuous measurements of CO were also
collected at 27m on a seventh tower (Sandia National Laboratories (SNL)) in the Livermore Valley for
model-measurement comparison of CO mixing ratios. More details on the measurement method are
provided in Text S1 in the supporting information [Colman et al., 2001; Pétron et al., 2012; BAAQMD, 2016].

2.2. Inverse Modeling

We expand on the HBI method developed by Jeong et al. [2016] combining both CH4 and VOCmeasurements
for source attribution. The details of the HBI method are explained in Jeong et al. [2016], and here we
focus on the expanded equation that relates predictions to measurements to incorporate VOCs. We use
the following linear model for estimating emissions [Zhao et al., 2009; Jeong et al., 2012a, 2012b, 2013,
2016; Wecht et al., 2014]:

y ¼ Kλ þ v (1)

where y is the background-subtracted measurement vector (see Text S1 for background [Jeong et al.,
2013]); K= FE, F is the footprint; E is prior emissions; λ is a vector for scaling factors with a covariance
matrix Q; and v is a vector representing the model-measurement mismatch with a covariance matrix R.
The prior covariance matrix Q represents our assumption of the confidence of prior emissions, and the
diagonal components (i.e., σλ) of Q are estimated during our inversion process instead of using fixed
values (e.g., 50% uncertainty in Jeong et al. [2012a]). Following Jeong et al. [2016], we model σλ using a
half Cauchy distribution with a scale parameter of 1. The parameters for the R matrix are estimated by
using the same exponential covariance function as in Jeong et al. [2016] (see Figure S6 in the supporting
information for the estimates of the model-measurement uncertainty):

Ri; j ¼ η2exp �1
τ
ti � tj
�� ��� �

þ δi; jσ2Rs;x (2)

where η, τ, andσRs;x are parameters that define the covariance function, t is themeasurement time, and δ is the
Kronecker delta function. Expanding on Jeong et al. [2016], we add the components for VOCs to σR as shown
in equation (2). The subscripts s and x in σRs;x indicate that σR is estimated as a mean value for each site (s) and
gas species (x= {CH4, VOCs}). This reflects the fact that model-measurement errors are not uniform across the
sites and gas species. σRs;x is sampled from the half Cauchy distribution by using 50% of the mean measured
signal as a scale parameter.

In this study we solve for λ at 0.1° resolution for SFBA after aggregating predictions, based on the high-
resolution prior emissions (0.01° × 0.01°), and for regions outside SFBA we aggregate grid cells at the sub-
region scale (i.e., California’s air basins) in a similar way to that of Jeong et al. [2013, 2016]. We developed
high-resolution (0.01°) spatially explicit prior emission (i.e., E) maps for SFBA following the methods used
in Jeong et al. [2012a, 2013, 2014, 2016], and the details for the prior emissions are described in Fischer
and Jeong [2016]. The high-resolution prior emission maps for SFBA used in this study are shown in
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Figure S1, and emission totals by sector (SFBA total = 120Gg/yr) are summarized in Table S3 where the
sectors are categorized following recent regional inverse studies [e.g., Jeong et al., 2013, 2016]. For the
regions outside SFBA, we use the emission maps (0.1° × 0.1°) from Jeong et al. [2016].

For footprint (F) calculations we use the coupled Weather Research and Forecasting and Stochastic Time-
Inverted Lagrangian Transport (WRF-STILT) model [Skamarock et al., 2008; Nehrkorn et al., 2010] and adopt
the setup used in Jeong et al. [2016]. In this setup, an ensemble of 500 STILT particles are run backward in
time for 7 days driven with meteorology from the WRF model (version 3.6.1). Using WRF-STILT we simu-
late corresponding predictions to compare with the available measurements [Jeong et al., 2012b]. The
monthly mean footprint simulated by WRF-STILT is shown in Figure S2. To estimate the overall bias in
the transport simulation, we compared measured and predicted CO (Figures S7 and S8) assuming that
the potential bias in CO represents the bias in atmospheric transport for correcting the CH4 emissions
estimate [Jeong et al., 2016]. However, we note that there is possibility that the overall uncertainty for
the CH4 emission estimate may be expanded or reduced because the errors in the CO emissions may
be inversely correlated (i.e., anticorrelation) with errors in the transport model. The CO analysis suggests
that predicted CO is consistent with the measurement within error yielding the best fit slope (predicted
versus measured) of 0.93� 0.08 (at 68% confidence).

The linear model in equation (1) is expanded to solve for λ specific to biological (λBIO), natural gas (λNG), and
petroleum (λPL) sources:
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where CX is themeasurement vector (n×1) for gas species X,Cbg
X is the background vector (n× 1), and f �X is the

emission ratio of VOC X to CH4. For VOC background, we fit a simple linear model to measurements at
Trinidad Head (THD, gas analysis by NOAA) to generate continuous VOC background mixing ratios (Figure
S3). For example, given a few available data points the measured C2H6 from THD shows a linear trend during
the study period, and a similar linear trend is shown at a global background site in Iceland [Helmig et al., 2016].
Because this linear model could introduce mean bias, equation (3) is modified to incorporate the mean
adjustment as

y ¼ Kλ þ D þ v (4)

where Kλ represents the first two terms on the right-hand side of equation (3) and D is a vector for mean
adjustments, which is estimated during the hierarchical inverse process. Each element of D represents the
mean background adjustment and other potential biases (e.g., measurement offsets and transport biases)
for each combination of sites and species. The estimated mean biases are provided in Table S2 and Figure S4.
Although D is estimated with a large uncertainty bound for each combination of sites and gas species (see
Table S2 and Figure S4), there exists some variability in estimatedD across the sites and species. This suggests
that for a subset of the sites and species there are undiagnosed residual mean biases (e.g., due to uncaptured
subgrid-scale transport error) that are often found in the comparison between posterior predictions and
measurements [e.g., Johnson et al., 2016]. The small estimated bias at the Sutro (STR) site suggests that on
average the measurements at THD are representative of background concentrations for the SFBA region.
For the matrix that constitutes predictions (i.e., K), FEBIO (n× k matrix; k is the number of pixels (0.1°) or sub-
regions) is the predicted mixing ratio for biological (BIO) sources (i.e., all sectors including landfill, livestock,
and wastewater except for the NG and PL sectors), FENG (n × k) is the predicted mixing ratio for NG, and
FEPL (n× k) is the predicted mixing ratio for PL. Zero is a zero matrix with a dimension of n× k. Applying this
inversion scheme, we perform inversions for two separate seasons of early fall (September–October) and late
fall (November–December), and estimated emissions are summarized for the combined season.
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Following the HBI method in Jeong et al. [2016], we solve equation (4) by using a Markov chain Monte
Carlo (MCMC) technique (see Jeong et al. [2016] for details), and here we add additional parameters for D
(equation (4)) and f �X . Expanding on Jeong et al. [2016], we estimate the following joint parameter set:

Θ ¼ λ; μλ; σλ; σR; η; τ; f
�
X ;D

� �
where μλ is the prior (i.e., hyper-parameter) mean for λ and σλ is the uncertainty for λ. When all four VOCs are
used, the total number of parameters to be estimated is 1822 (585 for each of {λ, μλ, σλ}, 30 for each of {σR, D},
5 for f �X , and a single estimate for each of {τ, η}). We note that the hierarchical approach is a sensible choice
when there are more parameters than data because the additional structure through the hierarchy reduces
the overfitting problem [Gelman et al., 2014].

To build MCMC samplers (sample size = 20,000), the NIMBLE package (version 0.5; [de Valpine et al., 2016]) is
used together with the R statistical language (https://cran.r-project.org/). NIMBLE extends the Bayesian
inference Using Gibbs Sampling [Gilks et al., 1994] language and is flexible to implement complex model
specifications as in our study. We use a Metropolis-Hastings adaptive random-walk sampler available in
NIMBLE, and the proposal distribution is automatically adapted to a target acceptance rate (e.g., 0.4)
depending on the sampler [de Valpine et al., 2016] to ensure optimal MCMC mixing [Roberts et al., 1997].
For VOC:CH4 ratios (i.e., f

�
X ), for example, f �C2H6NG

and f �C2H6PL
are the C2H6:CH4 emission ratios for the NG and

PL sectors, respectively, which are optimized based on the VOC measurements during the inversion. For
f �C2H6NG

, the median value from the posterior samples (Figure S5) is similar to the prior assumption of 0.04,

which is a typical value for C2H6:CH4 reported for the SFBA NG distribution system [PG&E, 2015]. The median
value for the posterior estimate for f �C2H6PL

is also similar to the prior assumption of 0.07 (see Table S4 for the

prior values). For other VOCs, the estimated VOC:CH4 ratios from HBI (Figure S5) are consistent with the prior
values except for C7H8, which shows somewhat lower posterior estimates (median = 0.12) for its VOC:CH4

ratio compared to the prior value (0.16).

3. Results
3.1. CH4 Emissions in SFBA

Our HBI analysis estimates that SFBA’s CH4 emissions (including wetland, 3% of the anthropogenic total in our
prior emission) are 174–282GgCH4/yr (median = 225, at 95% confidence), higher (1.4–2.2 times) than a
recent inventory (126Gg CH4/yr in 2011) from BAAQMD [BAAQMD, 2015]. A simple regression analysis of
model predictions versus measurements also indicates that actual CH4 emissions are more than 2 times
higher than those from the prior emission model (Figure S9).

In comparison with previous work on the SFBA CH4 emissions, we note that the estimated total CH4 emissions
are consistent with results from independent studies by Fairley and Fischer [2015] and Jeong et al. [2016]
which reported 180–300GgCH4/yr (at 95% confidence) and 159–340Gg (at 95% confidence), respectively.
Here we note that Fairley and Fischer [2015] estimated CH4 emissions in a decade-long CH4:CO correlation
analysis from surface air-quality monitoring stations, while Jeong et al. [2016] estimated the total CH4

emissions in a yearlong atmospheric inversion study without source partitioning, driven primarily by CH4

measurements from three SFBA tower sites (STR, SNL, and WGC). Jeong et al. [2016] used different prior emis-
sions (0.1° resolution) with 20% higher total for prior SFBA emissions and conducted inversions at a coarser
resolution of 0.3°. In addition,Wecht et al. [2014] obtained a range of central estimates for SFBA CH4 emissions
(370, 390, and 430Gg/yr) from an inverse model analysis of airborne CH4 measurements obtained during the
May–June 2010 California Nexus campaign. While Wecht et al. [2014] do not report uncertainty bounds on
these estimates, the minimum of their range falls outside the 95% confidence interval of the current estimate
and is also roughly double the central estimates of Fairley and Fischer [2015] and Jeong et al. [2016].

Figure 1a shows the median posterior emissions after inversion by sector, adjusting the prior emissions
for individual 0.1° pixels based on the corresponding posterior scaling factors [Jeong et al., 2013, 2016;
Wecht et al., 2014]. Among individual sectors, in particular, our HBI analysis suggests that the posterior
landfill (LF) emissions are much higher than those of the prior, although the ratio of LF to total (51%)
in the posterior estimate is similar to the prior one (54%). We note that source partitioning using this
method depends on the accuracy of the relative source composition for each pixel in the prior emission

Geophysical Research Letters 10.1002/2016GL071794

JEONG ET AL. METHANE EMISSIONS IN THE SF BAY AREA 489

https://cran.r-project.org


Figure 1. (a) CH4 emissions (only posterior median emissions shown) in SFBA by sector using CH4 measurements only,
(b) dairy livestock (DLS) and landfill (LF) emission flux (nmol/m2/s) maps at 0.1° × 0.1° resolution, (c) and maps of ratios
of DLS and LF to the total emissions for each 0.1° pixel. The sectors in the bar plot in Figure 1a includes dairy livestock (DLS),
nondairy livestock (NDLS), landfill (LF), natural gas (NG), petroleum refining and on-road mobile sources (PL), and waste-
water (WW). For this result, we assume that the ratios of individual sector emissions to the total for each 0.1° pixel is known
from the prior CH4 emission map. Then we scaled each sector prior within each pixel by the corresponding posterior
scaling factor to obtain posterior emissions. Note that the inversion is performed at 0.1° (~10 km) resolution for SFBA
aggregating predicted mixing ratio concentrations based on the prior emissions at 0.01° (~1 km) resolution. In Figures 1b
and 1c, the longitude labels (x axis) are the same for all four figures.
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model and may not be completely independent; for this reason, we do not show confidence intervals on
the values shown in this figure.

A further analysis of the spatial distribution of emissions suggests that inversions using a high resolution as in
this study can be useful to separate emissions for some source sectors from those of other sources. Figures 1b
and 1c show the LF emissionmap and the ratio of LF to total emissions for each 0.1° pixel in SFBA. Many of the
pixels, which have high emission fluxes, also show high ratios of LF to the total. Summing emissions from the
pixels with greater than 0.8 in the LF ratio relative to the total, we find that the total from those high-emitting
pixels accounts for 85% of the total LF emissions in SFBA (Figure S10). We can apply a similar analysis to the
dairy livestock (DLS) sector, which has been reported to emit more CH4 emissions than suggested by the state
inventory in California [Jeong et al., 2013, 2016; Johnson et al., 2014, 2016] although in SFBA the difference
between the prior and posterior DLS emissions is less noticeable than the LF sector. As shown in Figures 1b
and 1c, the dairy emission sources in SFBA are concentrated in Marin and Sonoma counties, and in the
majority of those pixels with DLS emission sources the ratios of DLS to the total are greater than 0.5.

3.2. Source Apportionment Using VOCs

Combining CH4 and VOC measurements, we use a more robust method for source attribution than we
applied in the previous section and separate CH4 emissions into BIO, NG, and PL sectors. Figure 2a shows
the estimated emissions by sector considering different sets of VOCs. We first performed the inversion with
CH4 and C2H6 only, and then added i-C5H12 and n-C5H12 to further constrain the PL sector. A third inversion

Figure 2. (a) Comparison of posterior CH4 emissions (at 95% confidence) by source sector using CH4, C2H6, i-C5H12,
n-C5H12, and C7H8 measurements and (b) comparison of prior and posterior natural gas emissions (Gg CH4/yr; 0.1°
resolution) for SFBA. In Figure 2a, the estimate using CH4 only is shown without confidence intervals as in Figure 1. In the
prior emission map in Figure 2b, the red open circles and triangles indicate the pixels where landfill and dairy emissions
are dominant, respectively (>50% of the pixel total). The natural gas emissions are small in most of the pixels where
landfill and dairy emissions are dominant.
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was conducted combining CH4 and all four VOCs. When i-C5H12, n-C5H12, and C7H8 are used in addition to
C2H6, the posterior uncertainty for PL emissions are significantly reduced compared to the case with C2H6

only. As expected, the BIO and NG emissions do not vary much across different inversions because the same
CH4 and C2H6 measurements are used for all inversions. The uncertainty for the BIO emission is slightly
reduced when the PL sector is further constrained by addition of more VOCs. The inversion results using
CH4 and all four VOC measurements suggest that SFBA CH4 emissions (including wetlands, ~3% of total)
are 166–289GgCH4/yr (median= 226, at 95% confidence), which are 1.3–2.3 times higher than a recent
inventory (126GgCH4/yr) from BAAQMD. This estimate is very similar to the one estimated by using
CH4 measurements only (174–282Gg). We note that if we incorporate the additional uncertainty of 8%
(about the median estimate) based on the CO measurement-prediction comparison assuming the CO
analysis is applicable to CH4 [Jeong et al., 2016] (section 2.2 and Figure S8), the estimated CH4 emissions
are 154–297GgCH4/yr (1.2–2.4 times the BAAQMD inventory, 95% confidence). We also note that
undiagnosed sources of uncertainty (e.g., unresolved transport errors) may increase these error bounds
beyond that indicated here. For example, there are cases where the simulated footprints over SFBA are
too narrow, not spreading over the region, and local emissions may not be captured properly.

Attributing the total CH4 emissions to different sources, we estimate that the BIO, NG, and PL emissions in
SFBA account for 82, 15, and 2% of the total (remaining 1% from other miscellaneous sources), respectively,
suggesting that the BIO emissions are much higher than fossil-fuel-based emissions. Similarly, our prior emis-
sion model suggests that the BIO source was dominant (78%) in SFBA. The HBI analysis estimates that the
posterior emission for the BIO sector is 126–249GgCH4/yr (at 95% confidence), higher than the prior
(94 GgCH4/yr) by factors of 1.3–2.6.

We estimate that total NG CH4 emissions for SFBA using all VOCs are 26–42GgCH4/yr, 1.5–2.4 times higher
than the prior (17 GgCH4/yr; Figure 2a). In Figure 2a, the NG emissions estimated from the CH4-only inversion
are consistent with those estimated by using observations of both CH4 and VOCs. This is likely due to the fact
that most of the NG-dominant pixels are spatially separated from the major BIO sources (i.e., landfill and dairy
emissions; Figures 1c and 2b) and the high-resolution inversion in this study distinguishes the majority of NG
emissions from the landfill and dairy emissions. Assessment of multicollinearity (a measure for correlation
between two or more variables) between BIO, NG, and PL sources also suggests that the three sources are
not strongly correlated. To check multicollinearity between BIO, NG, and PL sources, using BIO, NG, and PL
predictions, we calculated the variance inflation factors (VIF) which were 2–4. In general, the VIF value larger
than 10 indicates that collinearity can be problematic in a linear model [Myers, 1990]. However, we note that
the inversion may not completely separate emissions between individual pixels because of anticorrelation
[Jeong et al., 2012a, 2013]. The spatial distribution of CH4 emissions for the NG sector is compared between
prior and posterior estimates in Figure 2b, where emissions in some pixels are elevated after inversion.
According to our prior model, the vast majority (99%) of the NG emissions in SFBA is from the NG distribution
sector (Table S3), and the elevated emissions in the posterior NG emission map indicate that the prior emis-
sions for the NG distribution sector are underestimated.

Our posterior estimates for NG CH4 emissions are comparable to that estimated from a recent study aimed at
estimating spatially explicit natural gas emissions across California based on a bottom-up approach [Jeong
et al., 2014]. Jeong et al. [2014] estimates a total of 30 GgCH4/yr for SFBA from the natural gas sector, 93%
of which are from the NG transmission and distribution subsectors. In comparison, the total for NG in our prior
emission model is 17Gg CH4/yr, which is based on BAAQMD’s inventory. Our posterior estimate for NG is
0.87–1.4 times the total in Jeong et al. [2014]. Overall, our posterior estimate for the NG sector supports the
finding of Jeong et al. [2014] that their SoCAB total emission arising from NG distribution was lower than
the top-down estimate (for the year 2010) [Peischl et al., 2013] by a factor of ~2. In the inversion incorporating
data for all four VOCs, we estimate that the posterior PL emission is 3–4GgCH4/yr (at 95%), which is consis-
tent with the prior (4 Gg CH4).

4. Discussion and Conclusions

The multitracer method used in this study effectively separates BIO source CH4 emissions from NG and PL
source emissions in SFBA. This study estimates that 82% (i.e., median ratio of 185/226) of the total emission
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in SFBA is from biological sources, suggesting that the ratio of biological versus fossil emissions in SFBA is dif-
ferent from that of SoCAB, where multiple studies suggest that the proportion of fossil-fuel CH4 is consider-
ably higher (58–65% [Hopkins et al., 2016], ~70% [Wennberg et al., 2012], and 41–68% [Peischl et al., 2013]).
Similarly, in the California Greenhouse Gas Emission Measurements (CALGEM) prior model [Jeong et al.,
2016], which is scaled to match the 2012 CARB state inventory [CARB, 2014], the fossil-fuel sources for
SoCAB account for 35% of the total (349GgCH4/yr), which is higher than that (22%) of our prior model for
SFBA (Table S3). Among the BIO sources, our analysis shows that the landfill sector is underestimated in
the prior emission, contributing significantly to the large discrepancy between the prior and posterior emis-
sions estimates. Our result for SFBA is different from that for SoCAB where Peischl et al. [2013] suggested that
landfill emissions in SoCAB are generally consistent with CARB’s inventory estimate.

Furthermore, the VOC-based analysis also indicates that emissions from the fossil-fuel sources in SFBA are
relatively small compared to the biological sources. These results suggest that landfill emissions are likely a
dominant source of the total emissions in SFBA. To further investigate the discrepancy in the landfill
emissions in SFBA, we analyzed landfill data sets from U.S. Environmental Protection Agency (EPA)’s official
inventory [U.S. Environmental Protection Agency, 2016] and U.S. EPA’s Greenhouse Gas Reporting Program
(GHGRP, https://ghgdata.epa.gov/ghgp/main.do, accessed June 2016). We find that landfill emissions from
EPA are higher than our prior estimate based on CARB’s inventory or BAAQMD’s estimate, supporting the
result from our inverse analysis (Figure S11). An independent estimate [Maasakkers et al., 2016] based on
EPA’s official national inventory also suggests that California’s landfill total emissions from EPA’s inventory
(for 2012) are higher (~500Gg) than that (~340Gg) of CARB [CARB, 2014]. When we revise our prior inventory
using EPA’s landfill emissions and the NG emissions from Jeong et al. [2014], the revised inventory is margin-
ally consistent with our posterior estimates for SFBA’s total CH4 emissions (Figure S11). Note that for the revi-
sion of the landfill prior we scaled the GHGRP landfill emissions to match EPA’s official inventory considering
that GHGRP includes only ~70% of the total landfill emissions reported in EPA’s inventory. The scaled landfill
for California (in 2012) is ~500Gg, similar to an independent estimate using the EPA inventory [Maasakkers
et al., 2016]. More studies using facility-level measurements of CH4 and relevant VOCs (e.g., landfill flux mea-
surements) would be useful to verify the results of this study. Recent studies reported that livestock is the
main source of CH4 emissions in California and likely is underestimated in the CARB inventory [Jeong et al.,
2012a, 2013, 2016; Johnson et al., 2014, 2016; Wecht et al., 2014]. Because we derived the emission factors
for dairy livestock based on CARB’s inventory, it is possible that the dairy emissions in SFBA are also higher
than the prior estimate. This explanation for the underestimation of the biological sources in the prior emis-
sion model merits further verification.

The inversion result based on VOCmeasurements suggests that the NG CH4 emission rate in SFBA is relatively
lower than other urban regions in the United States. Natural gas consumption in SFBA shows seasonality with
winter having the highest consumption (~2 times that of summer). If we assume that CH4 emissions for the
NG distribution sector are proportional to NG consumption and apply the seasonal consumption relative to
that for our study period to our posterior emissions (26–42GgCH4), we estimate that annual NG emissions for
SFBA are 23–38GgCH4 (95% confidence; mostly related to NG distribution). These annual estimates are
equivalent to 0.3–0.5% (in mass ratio) of the total NG consumption, which is estimated to be 1.26×1010m3

for 2011 in BAAQMD’s official inventory [BAAQMD, 2015]. In SoCAB, the NG emissions are estimated to be
0.7–3% of the total NG consumption; in SoCAB, however, separating distribution NG emissions from other
NG sources is more challenging than in SFBA because of oil and gas production and geologic seeps
[Wennberg et al., 2012; Peischl et al., 2013]. Farrell et al. [2013] estimate up to ~60GgCH4/yr from the La
Brea Tar Pits alone. If more CH4 emissions are attributable to local geologic seeps, these percentage
emission rates relative to NG consumption would decrease. McKain et al. [2015] reported that the emission
rate in the Boston urban area is 2.7� 0.6% (at 95% confidence) of NG consumption.

In summary, we presented a Bayesian inverse analysis based on a combination of a high-resolution prior
emission model and both CH4 and VOC measurements separating fossil-fuel source emissions from those
of biological sources. The estimated total emissions from this study are consistent with recent independent
studies [Fairley and Fischer, 2015; Jeong et al., 2016], suggesting that the inverse framework based on the
measurement network can be an effective approach to monitoring long-term spatial and temporal changes
in SFBA emissions. However, it is possible that undiagnosed sources of error (e.g., unresolved transport errors)
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affect the CH4 emissions estimates. In the future, a combination of improved prior emissions and meteorolo-
gical models, expanded multigas measurements (e.g., additional VOC measurements), and inverse model
analyses should reduce uncertainty in SFBA’s GHG emissions. In SFBA and across the state, where livestock
emissions are important, additional measurements of VOCs (e.g., methanol as in Guha et al. [2015]) could
be incorporated into the inversion system developed in this study to separate dairy emissions from other
emissions sources. Increased practice of combining facility-specific emission measurements and regionally
representative measurements of source-specific tracers (e.g., CO, VOCs, and potentially CH4 isotopes)
[Townsend-Small et al., 2012; Peischl et al., 2013; Guha et al., 2015] would be very useful given the importance
of distinguishing dominant CH4 sources for prioritizing mitigation of large-scale events, such as the well fail-
ure at Aliso Canyon [Conley et al., 2016].

References
BAAQMD (2015), Bay Area Emissions Inventory Summary Report: Greenhouse Gases Base Year 2011. [Available at http://www.baaqmd.gov/

~/media/files/planning-and-research/emission-inventory/by2011_ghgsummary.pdf, updated January 2015); accessed March 2016.]
BAAQMD (2016), 2015 Air Monitoring Network Plan. [Available at http://www.baaqmd.gov/~/media/files/technical-services/2015_net-

work_plan-pdf.pdf?la=en; accessed May 2016.]
California Legislative Information (2014), Senate Bill No. 605 Short Lived Climate Pollutants, California Senate Bill. [Available at http://leginfo.

legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB605(accessed July 2016).]
CARB (2014), California Greenhouse Gas Emissions Inventory. California Air Resources Board Staff Report, Accessed January 2015.

[Available at http://www.arb.ca.gov/cc/inventory/inventory.htm, version March 2014).]
CARB (2015), California Greenhouse Gas Emissions Inventory. California Air Resources Board Staff Report, Accessed September 2015.

[Available at http://www.arb.ca.gov/cc/inventory/inventory.htm, version April 2015).]
Colman, J. J., A. L. Swanson, S. Meinardi, B. C. Sive, D. R. Blake, and F. S. Rowland (2001), Description of the analysis of a wide range of volatile

organic compounds in whole air samples collected during PEM-tropics A and B, Anal. Chem., 73, 3723–3731, doi:10.1021/ac010027g.
Conley, S., G. Franco, I. Faloona, D. R. Blake, J. Peischl, and T. B. Ryerson (2016), Methane emissions from the 2015 Aliso Canyon blowout in Los

Angeles, CA, Science, doi:10.1126/science.aaf2348.
Cui, Y. Y., et al. (2015), Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South

Coast Air Basin, J. Geophys. Res. Atmos., 120, 6698–6711, doi:10.1002/2014JD023002.
de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and R. Bodik (2016), Programming with models: Writing statistical

algorithms for general model structures with NIMBLE, J. Comput. Graphical Stat., doi:10.1080/10618600.2016.1172487.
Fairley, D., and M. L. Fischer (2015), Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012, Atmos.

Environ., doi:10.1016/j.atmosenv.2015.01.065.
Farrell, P., D. Culling, and I. Leifer (2013), Transcontinental methane measurements: Part 1. A mobile surface platform for source

investigations, Atmos. Environ., doi:10.1016/j.atmosenv.2013.02.014.
Fischer, M. L., and S. Jeong (2016), Evaluating the Bay Area methane emission inventory, BAAQMD Report (2014-108). [Available at

http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/baaqmd-2014-108-sfba-ch4-emissions_20160330-
pdf.pdf?la=en.]

Ganesan, A. L., et al. (2014), Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods,
Atmos. Chem. Phys., 14, 3855–3864, doi:10.5194/acp-14-3855-2014.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin (2014), Bayesian Data Analysis, 3rd ed., Chapman & Hall/CRC, Boca
Raton, Fla.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994), A language and program for complex Bayesian modeling, J. R. Stat. Soc. Ser. D, 43(1),
169–177.

Guha, A., D. R. Gentner, R. J. Weber, R. Provencal, A. Gardner, and A. H. Goldstein (2015), Source apportionment of methane and nitrous
oxide in California’s San Joaquin Valley at CalNex 2010 via positive matrix factorization, Atmos. Chem. Phys., 15, 12,043–12,063,
doi:10.5194/acp-15-12043-2015.

Helmig, D., et al. (2016), Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production, Nat.
Geosci., 9, doi:10.1038/NGEO2721.

Hopkins, F. M., E. A. Kort, S. E. Bush, J. R. Ehleringer, C.-T. Lai, D. R. Blake, and J. T. Randerson (2016), Spatial patterns and source attribution of
urban methane in the Los Angeles Basin, J. Geophys. Res. Atmos., 121, 2490–2507, doi:10.1002/2015JD024429.

Hsu, Y.-K., T. VanCuren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish (2010), Methane emissions inventory ver-
ification in southern California, Atmos. Environ., 44, 1–7, doi:10.1016/j.atmosenv.2009.10.002.

Hu, A., Y. Xu, C. Tebaldi, W. M. Washington, and V. Ramanathan (2013), Mitigation of short-lived climate pollutants slows sea-level rise, Nat.
Clim. Change, 3, 730–734, doi:10.1038/nclimate1869.

Jeong, S., C. Zhao, A. E. Andrews, L. Bianco, J. M. Wilczak, andM. L. Fischer (2012a), Seasonal variation of CH4 emissions from central California,
J. Geophys. Res., 117, D11306, doi:10.1029/2011JD016896.

Jeong, S., C. Zhao, A. E. Andrews, E. J. Dlugokencky, C. Sweeney, L. Bianco, J. M. Wilczak, and M. L. Fischer (2012b), Seasonal variations in N2O
emissions from central California, Geophys. Res. Lett., 39, L16805, doi:10.1029/2012GL052307.

Jeong, S., Y.-K. Hsu, A. E. Andrews, L. Bianco, P. Vaca, J. M. Wilczak, and M. L. Fischer (2013), A multitower measurement network estimate of
California’s methane emissions, J. Geophys. Res. Atmos., 118, 11,339–11,351, doi:10.1002/jgrd.50854.

Jeong, S., D. Millstein, andM. L. Fischer (2014), Spatially explicit methane emissions from petroleum production and the natural gas system in
California, Environ. Sci. Technol., 48, 5982–5990.

Jeong, S., et al. (2016), Estimating methane emissions in California’s urban and rural regions using multi-tower observations, J. Geophys. Res.
Atmos., 121, 13,031–13,049, doi:10.1002/2016JD025404.

Johnson, M. S., E. L. Yates, L. Iraci, M. Loewenstein, J. Tadić, K. J. Wecht, S. Jeong, and M. L. Fischer (2014), Analyzing source apportioned
methane in northern California during Discover-AQ-CA using airborne measurements and model simulations, Atmos. Environ., 99,
248–256, doi:10.1016/j.atmosenv.2014.09.068.

Geophysical Research Letters 10.1002/2016GL071794

JEONG ET AL. METHANE EMISSIONS IN THE SF BAY AREA 494

Acknowledgments
Authors acknowledge BAAQMD staff in
the Planning and Climate Protection
Division for assistance with emissions
inventory development and staff in the
Meteorology, Measurements and Rules
Division for assistance with air quality
data collection and site access. The
methane and ethane data used in the
inversion, THD background data, and
high-resolution prior emissions are in
supplements, and the CALGEM prior
emission distribution is available at
http://calgem.lbl.gov/. This analysis
was supported by the California
Energy Commissions Public Interest
Environmental Research program,
with work at LBNL conducted under
U.S. Department of Energy contract
DE-AC02-05CH11231.

http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/by2011_ghgsummary.pdf
http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/by2011_ghgsummary.pdf
http://www.baaqmd.gov/~/media/files/technical-services/2015_network_plan-pdf.pdf?la=en
http://www.baaqmd.gov/~/media/files/technical-services/2015_network_plan-pdf.pdf?la=en
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB605
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB605
http://www.arb.ca.gov/cc/inventory/inventory.htm
http://www.arb.ca.gov/cc/inventory/inventory.htm
http://doi.org/10.1021/ac010027g
http://doi.org/10.1126/science.aaf2348
http://doi.org/10.1002/2014JD023002
http://doi.org/10.1080/10618600.2016.1172487
http://doi.org/10.1016/j.atmosenv.2015.01.065
http://doi.org/10.1016/j.atmosenv.2013.02.014
http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/baaqmd-2014-108-sfba-ch4-emissions_20160330-pdf.pdf?la=en
http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/baaqmd-2014-108-sfba-ch4-emissions_20160330-pdf.pdf?la=en
http://doi.org/10.5194/acp-14-3855-2014
http://doi.org/10.5194/acp-15-12043-2015
http://doi.org/10.1038/NGEO2721
http://doi.org/10.1002/2015JD024429
http://doi.org/10.1016/j.atmosenv.2009.10.002
http://doi.org/10.1038/nclimate1869
http://doi.org/10.1029/2011JD016896
http://doi.org/10.1029/2012GL052307
http://doi.org/10.1002/jgrd.50854
http://doi.org/10.1002/2016JD025404
http://doi.org/10.1016/j.atmosenv.2014.09.068
http://calgem.lbl.gov


Johnson, M. S., X. Xi, S. Jeong, E. L. Yates, L. T. Iraci, T. Tanaka, M. Loewenstein, J. M. Tadić, and M. L. Fischer (2016), Investigating seasonal
methane emissions in Northern California using airborne measurements and inverse modeling, J. Geophys. Res. Atmos., 121,
13,753–13,767, doi:10.1002/2016JD025157.

Kirchstetter, T. W., B. C. Singer, R. A. Harley, G. R. Kendall, and W. Chan (1996), Impact of oxygenated gasoline use on California light-duty
vehicle emissions, Environ. Sci. Technol., 30, 661–670.

Maasakkers, J. D., et al. (2016), Gridded national inventory of U.S. methane emissions, Environ. Sci. Technol., 50, 13,123–13,133, doi:10.1021/
acs.est.6b02878.

McKain, K., et al. (2015), Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, Proc. Natl.
Acad. Sci. U.S.A., 112(7), doi:10.1073/pnas.1416261112.

Myers, R. H. (1990), Classical and modern regression with applications, 2nd ed., Duxbury, Boston, Mass.
Nehrkorn, T., J. Eluszkiewicz, S. C. Wofsy, J. C. Lin, C. Gerbig, M. Longo, and S. Freitas (2010), Coupled Weather Research and Forecasting–

Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model,Meteorol. Atmos. Phys., 107(1), 51–64, doi:10.1007/s00703-010-0068-x.
Peischl, J., et al. (2013), Quantifying sources of methane using light alkanes in the Los Angeles basin, California, J. Geophys. Res. Atmos., 118,

4974–4990, doi:10.1002/jgrd.50413.
Pétron, G., et al. (2012), Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304,

doi:10.1029/2011JD016360.
PG&E (2015), Online reporting of natural gas composition. [Available at http://www.pge.com/pipeline/operations/gas_quality/index.page;

accessed Jan-Dec, 2015.]
Roberts, G. O., A. Gelman, and W. R. Gilks (1997), Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl.

Probab., 7, 110–120, doi:10.1214/aoap/1034625254.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, X. Z. Huang, W. Wang, and J. G. Powers (2008), A description of the advanced

research WRF version 3 Technical Note 475 + STR. Mesoscale and Microscale Meteorology Division, NCAR, Boulder, Colo.
Townsend-Small, A., S. C. Tyler, D. E. Pataki, X. Xu, and L. E. Christensen (2012), Isotopic measurements of atmospheric methane in Los

Angeles, California, USA: Influence of “fugitive” fossil fuel emissions, J. Geophys. Res., 117, D07308, doi:10.1029/2011JD016826.
Turner, A. J., et al. (2015), Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data,

Atmos. Chem. Phys., 15, 7049–7069, doi:10.5194/acp-15-7049-2015.
US Environmental Protection Agency (2016), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. EPA 430-R-16-002.

[Available at http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html, accessed May 2016).]
Wecht, K. J., D. J. Jacob, M. P. Sulprizio, G. W. Santoni, S. C. Wofsy, R. Parker, H. Bösch, and J. Worden (2014), Spatially resolving methane

emissions in California: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geosta-
tionary) satellite observations, Atmos. Chem. Phys., 14, 8173–8184, doi:10.5194/acp-14-8173-2014.

Wennberg, P. O., et al. (2012), On the sources of methane to the Los Angeles atmosphere, Environ. Sci. Technol., 46(17), 9282–9289,
doi:10.1021/es301138y.

Wong, K. W., D. Fu, T. J. Pongetti, S. Newman, E. A. Kort, R. Duren, Y.-K. Hsu, C. E. Miller, Y. L. Yung, and S. P. Sander (2015), Mapping CH4: CO2

ratios in Los Angeles with CLARS-FTS from Mount Wilson, California, Atmos. Chem. Phys., 15, 241–252, doi:10.5194/acp-15-241-2015.
Wunch, D., et al. (2016), Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long-term

measurements of ethane and methane, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-359.
Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. L. Fischer (2009), Atmospheric inverse

estimates of methane emissions from Central California, J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671.

Geophysical Research Letters 10.1002/2016GL071794

JEONG ET AL. METHANE EMISSIONS IN THE SF BAY AREA 495

http://doi.org/10.1002/2016JD025157
http://doi.org/10.1021/acs.est.6b02878
http://doi.org/10.1021/acs.est.6b02878
http://doi.org/10.1073/pnas.1416261112
http://doi.org/10.1007/s00703-010-0068-x
http://doi.org/10.1002/jgrd.50413
http://doi.org/10.1029/2011JD016360
http://www.pge.com/pipeline/operations/gas_quality/index.page;
http://doi.org/10.1214/aoap/1034625254
http://doi.org/10.1029/2011JD016826
http://doi.org/10.5194/acp-15-7049-2015
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://doi.org/10.5194/acp-14-8173-2014
http://doi.org/10.1021/es301138y
http://doi.org/10.5194/acp-15-241-2015
http://doi.org/10.5194/acp-2016-359
http://doi.org/10.1029/2008JD011671


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


